CUBIC DIRAC OPERATORS AND THE STRANGE FREUDENTHAL–DE VRIES FORMULA FOR COLOUR LIE ALGEBRAS
نویسندگان
چکیده
The aim of this paper is to define cubic Dirac operators for colour Lie algebras. We give a necessary and sufficient condition construct algebra from an $\epsilon$-orthogonal representation $\epsilon$-quadratic algebra. This used prove strange Freudenthal-de Vries formula basic algebras as well Parthasarathy calculate the cohomology induced by operator, analogously algebraic Vogan conjecture proved Huang Pand\v{z}i\'c.
منابع مشابه
Dirac Operators and Lie Algebra Cohomology
Dirac cohomology is a new tool to study unitary and admissible representations of semisimple Lie groups. It was introduced by Vogan and further studied by Kostant and ourselves [V2], [HP1], [K4]. The aim of this paper is to study the Dirac cohomology for the Kostant cubic Dirac operator and its relation to Lie algebra cohomology. We show that the Dirac cohomology coincides with the correspondin...
متن کاملLie Algebras of Differential Operators and Lie-Algebraic Potentials
An explicit characterisation of all second order differential operators on the line which can be written as bilinear combinations of the generators of a linitedimensional Lie algebra of first order differential operators is found, solving a problem arising in the Lie-algebraic approach to scattering theory and molecular dynamics. One-dimensional potentials corresponding to these Lie algebras ar...
متن کاملDelta Methods in Enveloping Algebras of Lie Colour Algebras
In recent papers J. Bergen and D. S. Passman have applied so-called`Delta methods' to enveloping algebras of Lie superalgebras. This paper generalizes their results to the class of Lie colour algebras. The methods and results in this paper are very similar to those of Bergen and Passman, and many of their proofs generalize easily. However, at some points there are serious diiculties to overcome...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transformation Groups
سال: 2021
ISSN: ['1531-586X', '1083-4362']
DOI: https://doi.org/10.1007/s00031-021-09680-x